Single electrons from semileptonic charm meson decays in 200 GeV pp collisions at PHENIX Xinhua Li (UC Riverside) for the PHENIX Collaboration Quark Matter 2004 Conference Jan. 11 – 17, 2004 Oakland, California #### Why charm in p+p collisions @ RHIC Charm production mainly through gluon-gluon fusion and quark-antiquark annihilation. Quark-gluon scattering also involved at higher order. (R. Vogt, hep-ph/0111271) Charm measurement intrinsically interesting. #### Reference to understand: - charm production in heavy ion collisions probe of initial state and state of nuclear medium - J/ Ψ suppression in heavy ion collision one of signature of QGP ### PHENIX in Run2 p+p at 200 GeV #### This analysis uses: 15M MiniBias events in |Z_{vertex}| < 25 cm 465M sampled events by Level1 Trigger #### For electron measurements ■ BBC: vertex position, trigger DC, PC1: tracking momentum measurement RICH: electron ID PC3: charge veto for photon ID ■ EMCal: electron ID energy measurement #### How to detect charm #### Direct method: Reconstruction of D-meson (e.g. $D^0 \rightarrow K^- \pi^+$). Very challenging without measurement of displaced Vertex. Indirect method: Measure leptons from semileptonic decay of charm mesons. Used at PHENIX. ## Challenging at PHENIX Charm $e/\pi \sim 3-5x10^{-4}$ expected in p+p @ 200 GeV #### **Backgrounds** $$\pi^{0} \rightarrow e^{+}e^{-} \gamma$$ $$\pi^{0} \rightarrow \gamma \gamma$$ $$e^{+}e^{-}$$ **Dalitz:** Branching Fraction=1.2% **Conversion: comparable to Dalitz** $$\eta \rightarrow e^{+}e^{-}\gamma \eta \rightarrow \gamma \gamma \downarrow e^{+}e^{-}$$ e^+e^- 10-20% of π^0 contribution at high pt Others small, e.g. K, ρ , ω , η ', ϕ decays ### Three approaches at PHENIX (Talk by S. Kelly in Parallel 2 on Thursday) **Photon converter method:** requires good statistics of dedicated converter run (Poster Flavor 15) Cocktail method: needs full knowledge of π^0 spectrum (Poster Flavor 11) (e, γ) coincidence: normalization in π^0 spectrum not used (this poster) #### Way to electrons from non- π^0 sources π^0 simulation following decay branching fractions $$B(\pi^0 -> \gamma \gamma) = 98.8\%$$ $$B(\pi^0 -> \gamma e^+ e^-) = 1.2\%$$ π^0 reconstructed from (e, γ) coincidence **Calculate R=coincidence / electron inclusive** Electrons from non- π^0 sources/electron inclusive = 1 - R(data)/R(simulation) ### Simulation input π⁰ is well measured at PHENIX for p+p @ 200 GeV PRL 91, 241803 (2003) absolute normalization (A) is not used ## (e, γ) coincidence Internal/external γ conversion: $\pi^0 \rightarrow \gamma e^+e^-$ **Reconstruct** π^0 from (e,γ) coincidence ## Rate of (e,γ) coincidence coincidence increases with p_t due to less bending of electron in magnetic field no coincidence from charm meson decays data<simulation at high p_t no charm expected to be seen at low p_t data=simulation ## Electrons from non- π^0 sources / inclusive in pp collisions at 200 GeV #### based on PHENIX η spectrum in p+p at 200 GeV and η simulation #### Electrons from η Dalitz and conversions ## Ratio of electrons from non-photonic sources over inclusive after η subtraction ## Electron inclusive spectrum in pp collisions at 200 GeV ## Electrons from non-photonic sources in pp collisions at 200 GeV #### **Summary** Extract electrons from non- π^0 sources by (e,γ) coincidence Subtract η with PHENIX η spectrum and simulation New method applicable to dAu, AuAu data analysis Electron yield from non-photonic sources is measured K_{e3} contribution is estimated small Electron signal from charm production is evident PYTHIA prediction is compared *(Poster Flavor 11)* Set pp reference for dAu and AuAu